# PINZA MULTIMÉTRICA

El modelo Chauvin Arnoux F405 es el equivalente al modelo AEMC 405 F405



FSPAÑOL

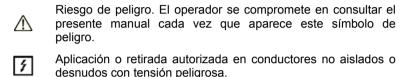
Manual de instrucciones



# ÍNDICE

| 2.1<br>2.2<br>2.3<br>2.4<br>2.4.<br>2.4.<br>2.5<br>2.5<br>2.5.<br>2.6                                                                                    | ESENTACIÓN                                | 8    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
| 1.3 1.3 1.3 1.4  2 LAS  2.1 2.2 2.3 2.4 2.4. 2.4. 2.5 2.5 2.5 2.6  3 USO  3.1 3.2 3.3 3.4 3.4. 3.4. 3.4. 3.4. 3.5                                        | EL CONMUTADOR                             | 9    |
| 1.3. 1.4  2 LAS  2.1 2.2 2.3 2.4 2.4. 2.4. 2.5 2.5. 2.5 2.6  3 USO  3.1 3.2 3.3 3.4 3.4. 3.4. 3.4. 3.5                                                   | LAS TECLAS DEL TECLADO                    |      |
| 1.3. 1.4  2 LAS  2.1 2.2 2.3 2.4 2.4. 2.4. 2.5 2.5. 2.5. 2.6  3 USO  3.1 3.2 3.3 3.4 3.4. 3.4. 3.4. 3.4. 3.5                                             | LA PANTALLA                               |      |
| 1.4  2 LAS  2.1 2.2 2.3 2.4 2.4. 2.4. 2.5 2.5. 2.5 2.6  3 USO  3.1 3.2 3.3 3.4 3.4. 3.4. 3.4. 3.4. 3.5                                                   |                                           |      |
| 2.1 2.2 2.3 2.4 2.4. 2.4. 2.5 2.5. 2.5. 2.6 3 USO 3.1 3.2 3.3 3.4 3.4. 3.4. 3.4. 3.5                                                                     | =                                         |      |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.4.<br>2.4.<br>2.5<br>2.5<br>2.5<br>2.5<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.4.<br>3.4. | LOS BORNES                                | . 13 |
| 2.2<br>2.3<br>2.4<br>2.4.<br>2.4.<br>2.5<br>2.5<br>2.5<br>2.5<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.4.<br>3.5         | S TECLAS                                  | . 14 |
| 2.3<br>2.4<br>2.4.<br>2.4.<br>2.5<br>2.5<br>2.5<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.4.<br>3.5.                      | TECLA HOLD                                | . 14 |
| 2.4<br>2.4.<br>2.4.<br>2.5<br>2.5<br>2.5<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.4.<br>3.5                              | TECLA (Función 2 <sup>A</sup> )           | . 15 |
| 2.4.<br>2.4.<br>2.5<br>2.5<br>2.5<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.5                                             | TECLA                                     |      |
| 2.4.<br>2.4.<br>2.5<br>2.5.<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.5                                                   | TECLA MAXMIN                              | . 16 |
| 2.4.<br>2.5<br>2.5.<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.5                                                           | 1 En modo normal                          | . 16 |
| 2.5<br>2.5.<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.4.<br>3.4.                                                          |                                           |      |
| 2.5.<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.4.<br>3.4.                                                                 |                                           |      |
| 2.5.<br>2.6<br>3 USO<br>3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.4.<br>3.4.                                                                 | TECLA Hz                                  |      |
| 2.6  3 USO 3.1 3.2 3.3 3.4 3.4. 3.4. 3.4. 3.5                                                                                                            | J                                         |      |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.4.<br>3.5                                                                                          |                                           |      |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.5                                                                                                  | TECLA AREL                                | . 20 |
| 3.2<br>3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.5                                                                                                         | 0                                         | . 21 |
| 3.3<br>3.4<br>3.4.<br>3.4.<br>3.4.<br>3.5                                                                                                                | PRIMERA PUESTA EN MARCHA                  | . 21 |
| 3.4<br>3.4.<br>3.4.<br>3.4.<br>3.5                                                                                                                       | PUESTA EN MARCHA DE LA PINZA MULTIMÉTRICA | . 21 |
| 3.4.<br>3.4.<br>3.4.<br>3.5                                                                                                                              | APAGADO DE LA PINZA MULTIMÉTRICA          | . 21 |
| 3.4.<br>3.4.<br>3.4.<br>3.5                                                                                                                              | CONFIGURACIÓN                             | . 22 |
| 3.4.<br>3.4.<br>3.5                                                                                                                                      | O                                         |      |
| 3.4.<br>3.5                                                                                                                                              |                                           |      |
| 3.5                                                                                                                                                      |                                           |      |
|                                                                                                                                                          |                                           |      |
| 3.6                                                                                                                                                      | MEDIDA DE TENSIÓN (V)                     |      |
| 2 (                                                                                                                                                      | PRUEBA DE CONTINUIDAD ••••)               |      |
| 3.6.                                                                                                                                                     | T                                         |      |
| 3.7                                                                                                                                                      | MEDIDA DE RESISTENCIA Ω                   |      |
| 3.8                                                                                                                                                      | PRUEBA DE DIODO →                         |      |
| 3.9<br><i>3.9</i> .                                                                                                                                      | MEDIDA DE INTENSIDAD (A)  1 Medida en AC  |      |
| 3.9.<br>3.9.                                                                                                                                             |                                           |      |

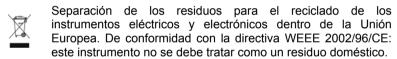
|   |         | DIDA DE LA CORRIENTE DE INSERCIÓN O DE SOBREINTENSIDAD                                                 | 20       |
|---|---------|--------------------------------------------------------------------------------------------------------|----------|
|   |         | USH)DIDA DE LA POTENCIA W, VA, VAR Y PF                                                                |          |
|   |         |                                                                                                        |          |
|   | 3.11.1  | Medida de la potencia en monofásico<br>Medida de la potencia en trifásico equilibrado                  | د2       |
|   | 3.11.2  | mediaa de la potencia en trijasico equilibradoDO SENTIDO DE ROTACIÓN DE LAS FASES U ORDEN DE LAS FASES |          |
|   |         | DO SENTIDO DE ROTACION DE LAS FASES O ORDEN DE LAS FASES                                               |          |
|   |         | DIDA DE FRECUENCIA (Hz)                                                                                |          |
|   | 3.13.1  | Medida de frecuencia en tensión                                                                        |          |
|   | 3.13.1  | Medida de frecuencia en intension                                                                      | 32<br>33 |
|   | 3.13.2  | Medida de frecuencia en potencia                                                                       |          |
|   |         | DIDA DE LA DISTORSIÓN ARMÓNICA TOTAL (THD) Y DE LA                                                     | 54       |
|   |         | CIA DE LA FUNDAMENTAL (RED)                                                                            | 3/       |
|   | 3.14.1  | Medida de la THD y de la frecuencia de la fundamental en tensión                                       |          |
|   | 3.14.2  | Medida de la THD y de la frecuencia de la fundamental en intensidad                                    |          |
|   |         |                                                                                                        |          |
| 1 | CARAC   | TERÍSTICAS                                                                                             | 35       |
|   | 4.1 COI | NDICIONES DE REFERENCIA                                                                                | 34       |
|   |         | RACTERÍSTICAS EN LAS CONDICIONES DE REFERENCIA                                                         |          |
|   | 4.2.1   | Medida de tensión DC                                                                                   |          |
|   | 4.2.2   | Medida de tensión AC                                                                                   |          |
|   | 4.2.3   | Medida de tensión en AC+DC                                                                             |          |
|   | 4.2.4   | Medida de intensidad DC                                                                                |          |
|   | 4.2.5   | Medida de intensidad AC                                                                                |          |
|   | 4.2.6   | Medida de intensidad AC+DC                                                                             |          |
|   | 4.2.7   | Medida de True-Inrush                                                                                  |          |
|   | 4.2.8   | Medida de continuidad                                                                                  |          |
|   | 4.2.9   | Medida de resistencia                                                                                  |          |
|   | 4.2.10  | Prueba de diodo                                                                                        |          |
|   | 4.2.11  | Medidas de potencia activa DC                                                                          | 41       |
|   | 4.2.12  | Medidas de potencia activa AC                                                                          | 42       |
|   | 4.2.13  | Medidas de potencia activa AC+DC                                                                       | 43       |
|   | 4.2.14  | Medidas de potencia aparente AC                                                                        | 44       |
|   | 4.2.15  | Medidas de potencia aparente AC+DC                                                                     | 44       |
|   | 4.2.16  | Medidas de potencia reactiva AC                                                                        |          |
|   | 4.2.17  | Medidas de potencia reactiva AC+DC                                                                     |          |
|   | 4.2.18  | Cálculo del factor de potencia                                                                         |          |
|   | 4.2.19  | Medidas de frecuencia                                                                                  |          |
|   | 4.2.20  | Características en THDr                                                                                |          |
|   | 4.2.21  | Características en THDf                                                                                | 48       |
|   | 4.2.22  | Indicación del orden de las fases                                                                      |          |
|   | 4.3 COI | NDICIONES DE ENTORNO                                                                                   | 49       |
|   |         | RACTERÍSTICAS CONSTRUCTIVAS                                                                            |          |
|   |         | MINISTRO ELÉCTRICO                                                                                     |          |
|   |         | NFORMIDAD CON LAS NORMAS INTERNACIONALES                                                               |          |
|   | 47 VA   | RIACIONES EN EL RANGO DE LITILIZACIÓN                                                                  | ``       |


| 5 | $\mathbf{M}$ | ANTENIMIENTO             | 52 |
|---|--------------|--------------------------|----|
|   | 5.1          | LIMPIEZA                 | 52 |
|   | 5.2          | CAMBIO DE LAS PILAS      | 52 |
|   | 5.3          | COMPROBACIÓN METROLÓGICA | 52 |
|   | 5.4          | REPARACIÓN               | 52 |
| 6 | G            | ARANTÍA                  | 53 |
| 7 | ES           | STADO DE ENTREGA         | 53 |

Usted acaba de adquirir una **Pinza multimétrica F405** y le agradecemos la confianza que ha depositado en nosotros.

Para conseguir las mejores prestaciones de su instrumento:

- lea detenidamente este manual de instrucciones.
- respete las precauciones de uso


### Significado de los símbolos utilizados en el instrumento :



□ Pila 1.5 V.

La marca CE indica la conformidad con las directivas europeas.

Aislamiento doble o aislamiento reforzado.



AC – Corriente alterna.

Riesgo de choque eléctrico.

## PRECAUCIONES DE USO

Este instrumento cumple con las normas de seguridad IEC 61010-1 y 61010-2-032 para tensiones de 1000 V en categoría IV a una altitud inferior a 2000 m y en interiores, con un grado de contaminación igual a 2 como máximo.

El incumplimiento de las instrucciones de seguridad puede ocasionar un riesgo de descarga eléctrica, fuego, explosión, destrucción del instrumento e instalaciones.

- El operador y/o la autoridad responsable debe leer detenidamente y entender correctamente las distintas precauciones de uso.
- Si utiliza este instrumento de una forma no especificada, la protección que garantiza puede verse alterada, poniéndose usted por lo tanto en peligro.
- No utilice el instrumento en atmósfera explosiva o en presencia de gas o vapores inflamables.
- No utilice el instrumento en redes de tensiones o categorías superiores a las mencionadas.
- Respete las tensiones e intensidades máximas asignadas entre bornes y con respecto a la tierra.
- No utilice el instrumento si parece estar dañado, incompleto o mal cerrado.
- Antes de cada uso, compruebe que los aislamientos de los cables, carcasa y accesorios estén en perfecto estado. Todo elemento cuyo aislante está dañado (aunque parcialmente) debe apartarse para repararlo o para desecharlo.
- Utilice cables y accesorios de tensiones y categorías al menos iguales a las del instrumento. En el caso contrario, una accesorio de categoría inferior reduce la categoría del conjunto pinza + accesorio a la del accesorio.
- Respete las condiciones medioambientales de uso.
- No modifique el instrumento y no sustituya componentes por otros equivalentes. Las reparaciones o ajustes deben realizarlos un personal competente autorizado.
- Cambie las pilas en cuanto aparezca el símbolo ☐ en el display. Desenchufe todos los cables antes de abrir la tapa de acceso a las pilas.
- Utilice protecciones individuales de seguridad cuando las condiciones lo exijan.
- No mantenga las manos cerca de los bornes no utilizados del instrumento.
- Al manejar puntas de prueba, pinzas cocodrilo y pinzas amperimétricas, mantenga los dedos detrás de la protección.

 Como medida de seguridad y para evitar sobrecargas sucesivas en las entradas del instrumento, se recomienda realizar las operaciones de configuración únicamente cuando no está conectado a tensiones peligrosas.

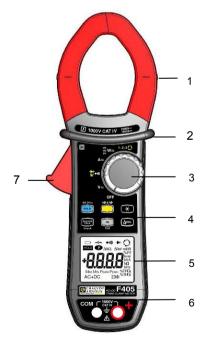
# CATEGORÍAS DE MEDIDA

#### Definición de las categorías de medida:

CAT II : Circuitos directamente conectados a la instalación de baja tensión.

Ejemplo: alimentación de aparatos electrodomésticos y de herramientas portátiles.

CAT III: Circuitos de alimentación en la instalación del edificio.


Ejemplo: cuadro de distribución, disyuntores, máquinas o aparatos industriales fiios.

**CAT IV**: Circuitos fuente de la instalación de baja tensión del edificio. *Ejemplo: entradas de energía, contadores y dispositivos de protección.* 

# 1 PRESENTACIÓN

La pinza **F405** es un instrumento profesional para las medidas de las magnitudes eléctricas que aúna las siguientes funciones :

- Medida de intensidad:
- Medida de corriente de inserción/sobreintensidad (True-Inrush);
- Medida de tensión;
- Medida de frecuencia:
- Medida de la distorsión armónica total (THD);
- Prueba de continuidad con zumbador;
- Medida de resistencia;
- Prueba de diodo:
- Medida de las potensias (W, VA, var y PF);
- Indicación del orden de las fases:



| N° | Descripción                                                             | Véase<br>§    |
|----|-------------------------------------------------------------------------|---------------|
| 1  | Mordazas con indicación de centrado (véanse los principios de conexión) | 3.5 a<br>3.12 |
| 2  | Protección                                                              | -             |
| 3  | Conmutador                                                              | <u>1.1</u>    |
| 4  | Teclas de función                                                       | <u>2</u>      |
| 5  | Pantalla                                                                | <u>1.3</u>    |
| 6  | Bornes                                                                  | <u>1.4</u>    |
| 7  | Gatillo                                                                 | -             |

Figura 1 : la pinza multimétrica F405

### 1.1 EL CONMUTADOR

El conmutador consta de seis posiciones. Para acceder a las funciones  $\sqrt{2}$ ,  $\sqrt{2}$ ,  $\sqrt{2}$ , posicione el conmutador en la función elegida. Se valida cada posición con una señal acústica. Las funciones están descritas en la tabla a continuación;

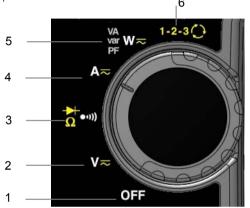



Figura 2 : el conmutador

| N° | Función                                                                                  | Véase §    |
|----|------------------------------------------------------------------------------------------|------------|
| 1  | Modo OFF – Apagado de la pinza multimétrica                                              | 3.3        |
| 2  | Medida de tensión (V) AC, DC, AC+DC                                                      | <u>3.5</u> |
| 3  | Prueba de continuidad ••••)                                                              | <u>3.6</u> |
|    | Medida de resistencia $oldsymbol{\Omega}$                                                | <u>3.7</u> |
|    | Prueba de diodo →                                                                        | <u>3.8</u> |
| 4  | Medida de intensidad (A) AC, DC, AC+DC                                                   |            |
| 5  | Medida de las potencias (W, var, VA) y cálculo del factor de potencia (PF) AC, DC, AC+DC |            |
| 6  | Indicación del orden de las fases 3.1                                                    |            |

## 1.2 LAS TECLAS DEL TECLADO

A continuación se muestran las seis teclas del teclado :

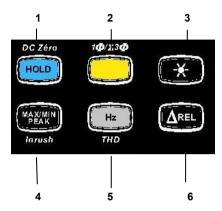



Figura 3 : el teclas del teclado

| N° | Función                                                                                           |            |  |  |
|----|---------------------------------------------------------------------------------------------------|------------|--|--|
| 1  | Memorización de los valores, bloqueo de la visualización                                          |            |  |  |
|    | Compensación del cero A <sub>DC</sub> / A <sub>AC+DC</sub> / W <sub>DC</sub> / W <sub>AC+DC</sub> | 3.9.2      |  |  |
|    | Compensación de la resistencia de los cables para la función de continuidad y ohmiómetro          |            |  |  |
| 2  | Selección del tipo de medida (AC, DC, AC+DC)                                                      | 2.2        |  |  |
|    | Selección de medida monofásica o trifásica                                                        |            |  |  |
| 3  | Activación o desactivación de la retroiluminación de la pantalla                                  |            |  |  |
| 4  | Activación o desactivación del modo MÁX./MÍN/PEAK.                                                |            |  |  |
|    | Activación o desactivación del modo INRUSH en A                                                   | <u>2.4</u> |  |  |
| 5  | Medidas de frecuencia (Hz), de la distorsión armónica total (THD)                                 |            |  |  |
|    | Visualización de las potencias W, VA, var y PF                                                    |            |  |  |
| 6  | Activación del modo ΔREL – Visualización de los valores relativos y diferenciales                 |            |  |  |

## 1.3 LA PANTALLA

A continuación se muestra la pantalla de la pinza multimétrica:

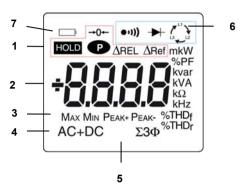



Figura 4 : la pantalla

| N° | Función                                                  | Véase §       |
|----|----------------------------------------------------------|---------------|
| 1  | Visualización de los modos seleccionados (teclas)        | 2             |
| 2  | Visualización de los valores y de las unidades de medida | 3.5 a 3.12    |
| 3  | 3 Visualización de los modos MÁX./MÍN./PEAK              |               |
| 4  | Naturaleza de la medida (alterna o continua)             | 2.2           |
| 5  | Medida de las potencias totales en trifásico             | <u>3.11.2</u> |
| 6  | Visualización de los modos seleccionados (conmutador)    | 3.5           |
| 7  | Indicador de pila gastada                                | <u>5.2</u>    |

# 1.3.1 Los símbolos de la pantalla

| Símbolos                       | Descripción                              |
|--------------------------------|------------------------------------------|
| AC Corriente o tensión alterna |                                          |
| DC                             | Tensión continua                         |
| AC+DC                          | Corriente alterna y continua             |
| ΔREL                           | Valor relativo respecto a una referencia |

| ΔRef           | Valor de referencia                                                          |  |
|----------------|------------------------------------------------------------------------------|--|
| HOLD           | Memorización de los valores y congelación de la visualización                |  |
| Max            | Valor RMS máximo                                                             |  |
| Min            | Valor RMS mínimo                                                             |  |
| Peak+          | Valor pico máximo                                                            |  |
| Peak-          | Valor pico mínimo                                                            |  |
| $\Sigma 3\Phi$ | Medida de la potencia totale en trifásico equilibrado                        |  |
| V              | Voltio                                                                       |  |
| Hz             | Hertz                                                                        |  |
| W              | Vatio                                                                        |  |
| A              | Amperio                                                                      |  |
| %              | Porcentaje                                                                   |  |
| Ω              | Ohmio                                                                        |  |
| m              | Prefijo mili-                                                                |  |
| k              | Prefijo kilo-                                                                |  |
| var            | Potencia reactiva                                                            |  |
| VA             | Potencia aparente                                                            |  |
| PF             | Factor de potencia                                                           |  |
| THDf           | Distorsión armónica total con respecto a la fundamenta                       |  |
| THDr           | Distorsión armónica total con respecto al verdadero valor eficaz de la señal |  |
| علي            | Indicador de orden de las fases                                              |  |
| →0←            | Compensación de la resistencia de los cables                                 |  |
|                |                                                                              |  |

| •11))                                         | Prueba de continuidad       |  |
|-----------------------------------------------|-----------------------------|--|
| *                                             | Prueba de diodo             |  |
| P Visualización permanente (auto apagado desa |                             |  |
|                                               | Indicador de pilas gastadas |  |

La indicación **"rdy"** representa la abreviación de "ready" para indicar que el instrumento está listo (función "indicador del orden de las fases).

## 1.3.2 Rebasamiento de las capacidades de medida (O.L)

El símbolo O.L (Over Load) aparece en pantalla cuando se rebasa la capacidad de visualización.

#### 1.4 LOS BORNES

Los bornes se utilizan de la siguiente forma:

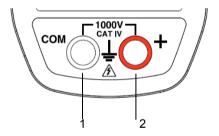



Figura 4: los bornes

| N° | Función                  |
|----|--------------------------|
| 1  | Borne punto frío (COM)   |
| 2  | Borne punto caliente (+) |

# 2 LAS TECLAS

Las teclas del teclado funcionan cuando se pulsan de forma corta, larga o se mantienen pulsadas.

Las teclas , , , ofrecen nuevas funciones y permiten detectar y adquirir parámetros complementarios de las medidas elementales tradicionales.

Cada una de estas teclas se puede utilizar independientemente de las demás o pueden complementarse: esto permite una navegación sencilla e intuitiva para consultar todos los resultados de medida.

Por ejemplo, se puede consultar sucesivamente los valores MÁX., MÍN., etc. de la tensión RMS únicamente, o bien consultar también sucesivamente todos los valores MÁX. (o MÍN o PEAK) de todos los resultados de potencia (W, VA, var, etc.).

En este capítulo, el icono prepresenta las posiciones del conmutador para las cuales la tecla implicada surte efecto.

## 2.1 TECLA www

Esta función permite:

- memorizar y consultar los últimos valores adquiridos propios a cada función (V, A, Ω, W) según los modos específicos activados previamente (MAX/MIN/PEAK, Hz, ΔREL, THD); la visualización en curso se mantiene mientras que la detección y adquisición de nuevos valores prosigue;
- realizar la compensación automática de la resistencia de los cables (véase también § 3.6.1);
- realizar la compensación automática del cero en A<sub>DC</sub>/<sub>AC+DC</sub> y W<sub>DC</sub>/<sub>AC+DC</sub> (véase también 3.9.2);

**Observación**: la tecla no surte efecto para la función indicación del orden de las fases.

| Cada<br>pulsación<br>sucesiva en | •           | permite                                                                       |
|----------------------------------|-------------|-------------------------------------------------------------------------------|
| Corta                            | V≂<br>••••• | memorizar los resultados de las medidas en curso                              |
|                                  | A~          | mantener la visualización del último valor<br>visualizado                     |
|                                  | ₩×          | volver a la visualización normal (se visualiza el valor de cada nueva medida) |

| Larga (> 2 seg.) | ADC<br>A AC+DC<br>WDC<br>W<br>AC+DC | realizar la compensación automática del cero (véase § 3.9.2)  Observación : este modo funciona si se han desactivado previamente los modos MAX/MIN/PEAK y HOLD (pulsación breve). |
|------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mantenida        | •13])                               | realizar la compensación automática de la resistencia de los cables (véase § 3.6.1)                                                                                               |

Asimismo, véase § 2.4.2 y § 2.5.2 para la función de la tecla con la función de la tecla y de la tecla y de la tecla y de la tecla con la función de la funció

# 2.2 TECLA (FUNCION 2<sup>A</sup>)

Esta tecla permite seleccionar el tipo de medida (AC, DC, AC+DC) así como las funciones secundarias marcadas en amarillo frente a las posiciones correspondientes del conmutador.

Asimismo, permite modificar los valores por defecto en modo configuración (véase § 3.4).

Observación: la tecla no surte efecto en modo MAX/MIN/PEAK, HOLD y ΔREL.

| Cada pulsación sucesiva en | <b>(a)</b>         | permite                                                                                                                         |  |
|----------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Corta                      | V≂<br>A≂<br>wir w≂ | su selección, aparece AC, DC o AC+DC en                                                                                         |  |
|                            | •••••              | - seleccionar sucesivamente los modos Ω, prueba de diodo → y volver a la prueba de continuidad •••».                            |  |
|                            | 1-2-3              | <ul> <li>reinicializar el proceso de medida para la<br/>función de indicador del orden de rotación de<br/>las fases.</li> </ul> |  |
| Larga (> 2 seg.)           | WA<br>ver W≂<br>PF | - visualizar la potencia total trifásica de ur régimen equilibrado (aparece $\Sigma 3\Phi$ ).                                   |  |
|                            |                    | - al pulsar una 2ª vez volver a la visualización de la potencia monofásica ( $\Sigma 3\Phi$ está apagado)                       |  |

# 2.3 TECLA

Esta tecla permite activar la retroiluminación de la pantalla.

| Cada pulsación sucesiva en | <b>(a)</b>              | permite                                                   |
|----------------------------|-------------------------|-----------------------------------------------------------|
|                            | V≂ Ω•***) Α≂ **** W≈ PF | - activar o desactivar la retroiluminación de la pantalla |

Observación: la retroiluminación se apaga automáticamente al cabo de 2 minutos.

### 2.4 TECLA MAX/MIN PEAK

#### 2.4.1 En modo normal

Esta tecla activa la detección de los valores MÁX., MÍN., PEAK+ y PEAK- de las medidas realizadas.

Máx. y Mín. son los valores promedios extremos en continuo o RMS extremos en alterno.

Peak+ es el valor de pico instantáneo máximo y Peak- el valor de pico instantáneo mínimo.

*Observación:* en este modo, la función "auto apagado automático" del instrumento se desactiva automáticamente. El símbolo parace en pantalla.

| Cada pulsación sucesiva<br>en |          | permite                                                                                                                                             |
|-------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Corta                         | V≂<br>A≂ | <ul> <li>activar la detección de los valores<br/>MÁX./MÍN./PEAK</li> <li>visualizar el valor MÁX., MÍN., PEAK+ o PEAK-<br/>sucesivamente</li> </ul> |
|                               |          | <ul> <li>volver a la visualización de la medida en curso sin<br/>salir del modo (los valores ya detectados no se<br/>borran)</li> </ul>             |
|                               |          | <b>Observación:</b> todos los símbolos MÁX./MíN./PEAK+/PEAK-se visualizan, sólo el símbolo de la magnitud seleccionada parpadea.                    |
|                               |          | <b>Por ejemplo:</b> Si la magnitud MÍN. ha sido seleccionada, MÍN. parpadea, MÁX., PEAK+, PEAK-se queda fijo.                                       |

| ••12)            |            | - activar la detección de los valores MÁX./MÍN                                                                                                        |
|------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | WA W≂      | - visualizar el valor MÁX., MÍN. sucesivamente                                                                                                        |
|                  |            | <ul> <li>volver a la visualización de la medida en curso sin<br/>salir del modo (los valores ya detectados no se<br/>borran)</li> </ul>               |
| Larga (> 2 seg.) | V≂<br>Ω•∞) | salir del modo MÁX./MÍN./PEAK. Los valores anteriormente guardados se eliminarán.                                                                     |
|                  | A≂<br>w W≂ | <b>Observación:</b> si la función HOLD está activada, no se puede salir del modo MÁX./MÍN./PEAK. Se tiene que desactivar la función HOLD previamente. |

**Observación**: la función ΔREL se puede utilizar las funciones del modo MÁX./MÍN./PEAK.

#### 2.4.2 El modo MÁX/MÍN + activación del modo HOLD

| Cada pulsación sucesiva<br>en Peak | <b></b> | permite                                                                                 |
|------------------------------------|---------|-----------------------------------------------------------------------------------------|
| corto                              | V ≂     | visualizar sucesivamente los valores MÁX./MÍN./PEAK detectados antes de pulsar la tecla |

Nota: la función HOLD no interrumpe la adquisición de nuevos valores MÁX., MÍN., PEAK.

# 2.4.3 Acceso al modo True-INRUSH ( en posición 🔼 )

Esta tecla permite la medida de las corrientes True-Inrush (corrientes de inserción al arranque o sobreintensidad en régimen establecido), únicamente para las corrientes AC o DC (no surte efecto en AC + DC)..

| Cada pulsación<br>sucesiva en                                     | <b>(a)</b> | permite                                                                                                                                                                |  |
|-------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Large (> 2 seg.)                                                  |            | entrar en el modo True-INRUSH                                                                                                                                          |  |
|                                                                   | A≂         | - "Inrh" aparece durante 3 s (retroiluminación encendida intermitente)                                                                                                 |  |
|                                                                   |            | - el umbral de activación aparece durante 5 s (retroiluminación encendida fija),                                                                                       |  |
|                                                                   |            | - "" aparece y el símbolo "A" parpadea                                                                                                                                 |  |
|                                                                   |            | <ul> <li>una vez detectada y adquirida, la medida de la<br/>corriente de inserción, después de la fase de cálculos "-</li> <li>" (retroiluminación apagada)</li> </ul> |  |
|                                                                   |            | Observación: el símbolo A parpadea para indicar "la vigilancia" de la señal.                                                                                           |  |
|                                                                   |            | salir del modo True-INRUSH (retorno a la medida simple de la corriente).                                                                                               |  |
| corta (< 2 seg.)                                                  |            | - visualizar el valor PEAK+ de la corriente                                                                                                                            |  |
|                                                                   | A≂         | - visualizar el valor PEAK- de la corriente                                                                                                                            |  |
| Nota: la pulsación corta                                          |            | - visualizar el valor de la corriente True-Inrush RMS                                                                                                                  |  |
| sólo surte efecto si se ha<br>detectado un valor True-<br>Inrush. |            | Observación: el símbolo A aparece fijo durante esta secuencia.                                                                                                         |  |

# 2.5 TECLA Hz

Esta tecla permite visualizar las medidas de frecuencia de una señal, de potencia y de la distorsión armónica total..

Observación: esta tecla no funciona en corriente DC.

## 2.5.1 La función Hz en modo normal

| Cada pulsación sucesiva<br>en Hz | <b>(a)</b>         | permite                                                                                       |  |
|----------------------------------|--------------------|-----------------------------------------------------------------------------------------------|--|
| corta                            | ٧ <del>~</del>     | visualizar:                                                                                   |  |
|                                  | A≂                 | - el valor de la frecuencia de la señal medida                                                |  |
|                                  |                    | - el valor de la medida corriente en tensión (V) o en corriente (A)                           |  |
|                                  | VA<br>ver W≂<br>PF | visualizar:                                                                                   |  |
|                                  |                    | - el valor de la potencia aparente (VA)                                                       |  |
|                                  |                    | - el valor de la potencia reactiva (var)                                                      |  |
|                                  |                    | - el factor de potencia (PF)                                                                  |  |
|                                  |                    | - la frecuencia de la señal                                                                   |  |
|                                  |                    | - el valor de la potencia activa (W)                                                          |  |
| Larga (> 2 seg.)                 | V≂<br>A≂           | - entrar o salir del modo de cálculo y de visualización de la distorsión armónica total (THD) |  |
| Luego corta                      | ~                  | - seleccionar el THDf, el THDr o la frecuencia de la fundamental (véase § 3.14)               |  |

# 2.5.2 La función Hz + activación del modo HOLD

| Cada pulsación<br>sucesiva en |                                                                                                 | permite                                                                                                      |  |
|-------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| corta                         | ٧ <del>~</del>                                                                                  | ∨≂ - memorizar la frecuencia                                                                                 |  |
|                               | - visualizar sucesivamente el valor memor de la frecuencia y luego el de la tensión o corriente |                                                                                                              |  |
|                               |                                                                                                 | - visualizar sucesivamente el valor memorizado<br>del THDf, del THDr y de la frecuencia de la<br>fundamental |  |

# 2.6 TECLA AREL

Esta tecla permite visualizar y memorizar el valor de referencia o visualizar el valor diferencial y relativo en la unidad de magnitud medida o en %

Observación : en modo orden de las fases, la tecla o funciona.

| Cada pulsación sucesiva en | <b>(a)</b>                                  | permite                                                                                                      |  |
|----------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|                            | V≂<br>•••••                                 | - entrar en el modo ΔREL, memorizar y luego visualizar el valor de referencia. Se visualiza el símbolo ΔRef. |  |
|                            | A≂                                          | - visualizar el valor diferencial :                                                                          |  |
| corta                      | VA<br>var <b>W≂</b><br>PF                   | -(valor corriente – referencia $(\Delta)$ )<br>Se visualiza el símbolo $\Delta$ REL.                         |  |
|                            |                                             | - visualizar el valor relativo en %                                                                          |  |
|                            |                                             | valor corriente – referencia (Δ)                                                                             |  |
|                            |                                             | referencia (Δ)                                                                                               |  |
|                            |                                             | Aparecen los símbolos ΔREL y %.                                                                              |  |
|                            |                                             | - visualizar la referencia. Se visualiza el símbolo ΔRef.                                                    |  |
|                            |                                             | - visualizar el valor corriente. El símbolo ΔRef parpadea.                                                   |  |
| larga (> 2 seg.)           | V≂<br>•···································· | salir del modo ΔREL.                                                                                         |  |

**Observación**: la función « modo Relativo ΔREL" se puede utilizar con las funciones del modo MÁX./ΜĺΝ./PEAK.

## 3 USO

#### 3.1 PRIMERA PUESTA EN MARCHA

Coloque las pilas suministradas con el instrumento como se indica a continuación:

- 1. Con un destornillador, desatornille el tornillo de la tapa (nº 1) situada en la parte posterior de la carcasa y abra la tapa;
- 2. Inserte las 4 pilas en su alojamiento (nº 2) respetando la polaridad;
- 3. Vuelva a colocar la tapa y atorníllela a la carcasa.

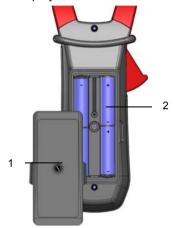



Figura 5 : la tapa de acceso a las pilas

#### 3.2 PUESTA EN MARCHA DE LA PINZA MULTIMÉTRICA

El conmutador está en la posición OFF. Gire el conmutador hacia la función que desee. Todos los símbolos de la pantalla aparecen durante unos segundos (véase § 1.3) y, a continuación, se visualiza la pantalla de la función seleccionada. La pinza multimétrica está entonces lista para realizar medidas.

### 3.3 APAGADO DE LA PINZA MULTIMÉTRICA

La pinza multimétrica se apaga o bien manualmente girando el conmutador hasta la posición OFF, o bien automáticamente después de diez minutos sin girar el conmutador y/o pulsar las teclas. Treinta (30) segundos antes de que se apague el instrumento, una señal acústica suena de modo discontinuo. Para volver a encender el instrumento, pulse una tecla o gire el conmutador.

### 3.4 CONFIGURACIÓN

Como medida de seguridad y para evitar sobrecargas sucesivas en las entradas del instrumento, se recomienda realizar las operaciones de configuración únicamente cuando no está conectado a tensiones peligrosas.

# 3.4.1 Programación de la resistencia máxima admisible para una continuidad

Parar programar la resistencia máxima admisible para una continuidad, siga los siguientes pasos:

- 1. Desde la posición OFF, mantenga pulsada la tecla girando el conmutador hasta , hasta el final de la presentación "pantalla completa" y la emisión de una señal acústica, para entrar en el modo configuración. En la pantalla aparece el valor abajo de la cual el zumbador está activado y el símbolo ) aparece.
  - El valor memorizado por defecto es 40  $\Omega$ . Los valores posibles se sitúan entre 1  $\Omega$  y 999  $\Omega$ .

Para salir del modo de programación, gire el conmutador hasta otra posición. El valor elegido del umbral de detección se memoriza (emisión de una doble señal acústica).

## 3.4.2 Desactivación del auto apagado (Auto Power OFF)

Para desactivar el auto apagado:

Desde la posición OFF, mantenga pulsada la tecla girando el conmutador hasta , hasta el final de la presentación "pantalla completa" y la emisión de una señal acústica, para entrar en el modo configuración. Aparece el símbolo

Al soltar la tecla el instrumento está en la función voltímetro en modo normal.

La vuelta a Auto Power OFF se realizará durante el reinicio de la pinza.

# 3.4.3 Programación del umbral de corriente en medida True INRUSH

Para programar el umbral de corriente de inicio de la medida True INRUSH, proceda como se indica a continuación:

- 1. Desde la posición OFF, mantenga pulsada la tecla girando el conmutador hasta , hasta el final de la presentación "pantalla completa" y la emisión de una señal acústica, para entrar en el modo configuración. En pantalla aparece el porcentaje de rebasamiento a aplicar al valor de la corriente medida para determinar el umbral de inicio de la medida.
  - El valor memorizado por defecto es 10%, representando el 110% de la corriente establecida medida. Los valores posibles son 5%, 10%, 20%, 50%, 70%, 100%, 150%, 200%.
- 2. Para cambiar el valor del umbral, pulse la tecla . El valor parpadea: cada vez que se pulsa la tecla se visualiza el valor siguiente. Para guardar el valor del umbral elegido, mantenga pulsada (>2 s) la tecla. Una señal acústica de confirmación se emite.

Para salir del modo de programación, gire el conmutador hasta otra posición. El valor del umbral elegido se memoriza (emisión de una doble señal acústica).

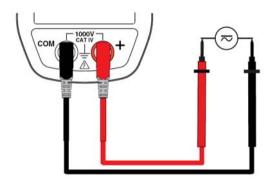
**Nota:** El umbral de inicio de la medida de una corriente de arranque se fija al 1% del rango menos sensible. Este umbral no se puede configurar

# 3.4.4 Configuración por defecto

Para reinicializar la pinza con sus parámetros por defecto (o configuración de fábrica):

A partir de la posición OFF, mantenga pulsada la tecla girando el conmutador hasta , hasta el final de la presentación "pantalla completa" y la emisión de una señal acústica, para entrar en el modo configuración. Aparece el símbolo "rSt".

Después de 2 s, la pinza emite una doble señal acústica, luego todos los símbolos aparecen en pantalla hasta que se suelte la tecla . Los parámetros por defecto se restablecen entonces:

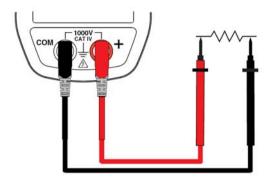

Umbral de detección en continuidad =  $40 \Omega$ Umbral de inicio True Inrush = 10%

# 3.5 MEDIDA DE TENSIÓN (V)

Para medir una tensión, proceda como se indica a continuación:

- 1. Posicione el comutador en V≂ :
- 2. Conecte el cable negro al borne COM y el cable rojo al "+";
- Coloque las puntas de prueba o las pinzas cocodrilo en los bornes del circuito a medir. El instrumento selecciona automáticamente AC o DC según el valor más grande medido. El símbolo AC, DC o AC+DC aparece intermitente.

Para seleccionar manualmente AC o DC, pulse la tecla amarilla hasta la elección deseada. El símbolo de la selección elegida aparece y se queda fijo.




El valor de la medida aparece en la pantalla.

#### 3.6 PRUEBA DE CONTINUIDAD ••••

**Advertencia:** Antes de realizar la prueba, asegúrese de que el circuito esté desconectado y los posibles condensadores descargados.

- 1. Posicione el conmutador en **tel**; aparece el símbolo ••••);
- Conecte el cable negro al borne COM y el cable rojo al "+";
- 3. Coloque las puntas de prueba o las pinzas cocodrilo en los bornes del circuito o componente a probar.

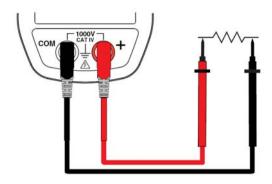


La señal acústica se emite si la continuidad y el valor de la medida aparecen en pantalla.

### 3.6.1 Compensación automática de la resistencia de los cables

Advertencia: antes de realizar la compensación, los modos MAX/MIN y HOLD deben desactivarse.

Para realizar la compensación automática de la resistencia de los cables, proceda como se indica a continuación:


- Cortocircuite los cables conectados al instrumento.
- 2. Mantenga pulsada la tecla hasta que aparezca en la pantalla el valor más bajo. El instrumento mide la resistencia de los cables.
- Suelte la tecla <sup>■■</sup>. Aparecen el valor de corrección y el símbolo →0←.
   El valor visualizado se memoriza.

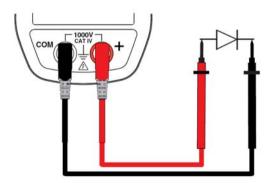
**Observación:** el valor de corrección se memoriza únicamente si es inferior a  $\leq 2 \Omega$ . Por encima de  $2 \Omega$ , el valor visualizado parpadea y no se memoriza.

#### 3.7 MEDIDA DE RESISTENCIA O

**Advertencia:** Antes de realizar la medida de resistencia, asegúrese de que el circuito esté desconectado y los posibles condensadores descargados.

- Posicione el conmutador en y pulse la tecla . Aparece el símbolo Ω:
- 2. Conecte el cable negro al borne **COM** y el cable rojo al "+";
- Coloque las puntas de prueba o las pinzas cocodrilo en los bornes del circuito o componente a medir.




El valor de la medida aparece en la pantalla.

**Observación:** para medir las resistencias de bajo valor, realice primero la compensación de la resistencia de los cables (véase § 3.6.1).

#### 3.8 PRUEBA DE DIODO →

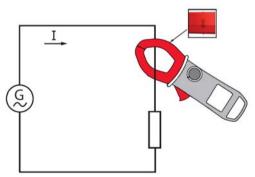
**Advertencia**: Antes de realizar la prueba de diodo, asegúrese de que el circuito esté desconectado y los posibles condensadores descargados.

- 2. Conecte el cable negro al borne **COM** y el cable rojo al "+";
- Coloque las puntas de prueba o las pinzas cocodrilo en los bornes del componente a probar.



El valor de la medida aparece en la pantalla.

## 3.9 MEDIDA DE INTENSIDAD (A)


Al apretar el gatillo hacia el cuerpo del instrumento se abren las mordazas. La flecha situada en las mordazas de la pinza (véase el esquema de abajo) debe estar orientada en el sentido supuesto de la circulación de la corriente del generador hacia la carga. Procure que las mordazas estén correctamente cerradas.

**Observación:** los resultados de medida son óptimos cuando el conductor está centrado en el medio de las mordazas (frente a las indicaciones de centrado). El instrumento selecciona automáticamente AC o DC según el valor más grande medido. El símbolo AC o DC aparece intermitente.

#### 3.9.1 Medida en AC

Para medir la intensidad en AC, proceda como se indica a continuación:

- Posicione el conmutador en y seleccione AC pulsando la tecla
   Aparece el símbolo AC :
- Abrace el único conductor implicado con la pinza. El strumento selecciona automáticamente AC o DC. Para seleccionar manualmente AC, pulse la tecla amarilla hasta la elección deseada.

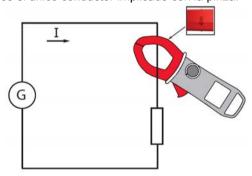


El valor de la medida aparece en la pantalla.

#### 3.9.2 Medida en DC o AC+DC

Para medir la intensidad en DC o AC+DC, si no aparece « 0 » en pantalla, corrija previamente el cero DC como se indica a continuación :

#### Paso 1 : para corregir el cero DC


Importante: La pinza no debe abrazar el conductor durante la corrección del cero DC. Mantenga la pinza en la misma posición durante todo el proceso para que el valor de corrección sea exacto.

Pulse la tecla es hasta que el instrumento emita una doble señal acústica y aparezca en la pantalla un valor cercano a "0". Se memoriza el valor de corrección hasta que se apague la pinza.

**Observación**: la corrección sólo se realiza si el valor visualizado es < ±10 A, en caso contrario el valor visualizado parpadea y no se memoriza. La pinza debe ser recalibrada (véase § 5.3)

### Paso 2 : para realizar la medida

- 1. El conmutador está en la posición Seleccione DC o AC+DC pulsando la tecla amarilla hasta la elección deseada.
- 2. Abrace el único conductor implicado con la pinza.



El valor de la medida aparece en la pantalla.

# 3.10 MEDIDA DE LA CORRIENTE DE INSERCIÓN O DE SOBREINTENSIDAD (TRUE INRUSH)

Observación : la medida sólo se puede realizar en modo AC o DC (modo AC+DC desactivado).

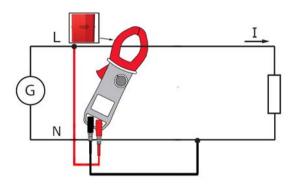
Para medir la corriente de arranque o de inserción, proceda como se indica a continuación:

- 1. Posicione el conmutador en 🔼 luego abrace el único conductor implicado con la pinza.
- 2. Mantenga pulsada la tecla El símbolo InRh aparece, luego aparece el valor del umbral de inicio. La pinza está esperando detectar la corriente True-Inrush.
  - Aparece "-----" y el símbolo "A" parpadea.

- 3. Una vez detectada y adquirida en 100 ms, aparece el valor RMS de la corriente True-Inrush, así como los valores PEAK+/PEAK- a continuación.
- 4. Al mantener pulsada la tecla o al cambiar de función se sale del modo True-Inrush

**Observación:** el valor del umbral de inicio en A está definido a 10 A en el caso de una corriente inicial nula (inicio instalación) o programado en la configuración (véase § 3.4.3) en el caso de una corriente ya establecida (sobrecarga en una instalación).

#### 3.11 MEDIDA DE LA POTENCIA W, VA, VAR Y PF


Esta medida se puede hacer en monofásico o trifásico equilibrado.

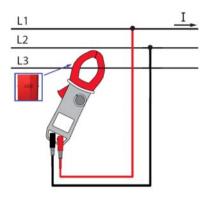
**Recuerde:** en medida de potencia DC o AC+DC, realice previamente una corrección del cero DC en corriente (véase § 3.9.2, paso 1).

Para el factor de potencia (PF), las potencias VA y var, la medida sólo es posible en AC o en AC+DC.

## 3.11.1 Medida de la potencia en monofásico

- 1. Posicione el conmutador en y seleccione VA, var o PF pulsando la tecla hasta la elección deseada:
- Aparece automáticamente AC+DC en el instrumento. Para seleccionar AC, DC o AC+DC, pulse la tecla hasta la elección deseada.
- 3. Conecte el cable negro al borne **COM** y el cable rojo al "+";
- 4. Coloque las puntas de prueba o las pinzas cocodrilo del cable negro en el neutro N y luego las del cable rojo en la fase L.
- Abrace el único conductor correspondiente con la pinza, respetando el sentido.




El valor de la medida aparece en la pantalla.

### 3.11.2 Medida de la potencia en trifásico equilibrado

- 1. Posicione el conmutador en y seleccione VA, var o PF pulsando la tecla \*\* hasta la elección deseada:
- 2. Pulse la tecla amarilla hasta que aparezca el símbolo  $\Sigma 3\Phi$ ;
- 3. Aparece automáticamente AC+DC en el instrumento. Para seleccionar AC, DC o AC+DC, pulse la tecla hasta la elección deseada.
- 4. Conecte el cable negro al borne **COM** y el cable rojo al "+";
- 5. Conecte los cables y la pinza al circuito como se indica a continuación:

| Si el cable rojo está conectado | y el cable negro está conectado | entonces la pinza abraza el conductor |
|---------------------------------|---------------------------------|---------------------------------------|
| En la fase L1                   | en la fase L2                   | de la fase L3                         |
| En la fase L2                   | en la fase L3                   | de la fase L1                         |
| En la fase L3                   | en la fase L1                   | de la fase L2                         |

**Recuerde**: la flecha situada en las mordazas de la pinza (véase esquema de abajo) debe estar orientada en el sentido supuesto de la circulación de la corriente de la fuente (productor) hacia la carga (consumidor).



El valor de la medida aparece en la pantalla.

**Observación**: Asimismo, puede medir la potencia trifásica en una red de 4 cables equilibrada realizando la misma operación o como para la medida en una red monofásica y luego multiplique el valor obtenido por tres.

# 3.12 MODO SENTIDO DE ROTACIÓN DE LAS FASES U ORDEN DE LAS FASES (1230)

Este modo permite definir el orden de las fases de una red trifásica por el método llamado a "2 cables".

Para definir el orden de las fases, proceda como se indica a continuación:

#### Paso 1 : determinación del período de "referencia":

- Conecte el cable negro con pinza cocodrilo al borne COM y el cable rojo con punta de prueba al "+";
- Conecte la pinza cocodrilo a la fase L1 supuesta y aplique la punta de prueba roja a la fase supuesta L2;
- 4. Pulse la tecla amarilla . El símbolo **ref** parpadea en la pantalla. El instrumento está listo para definir el período de referencia. Cuando el período de referencia está definido, una señal acústica suena y aparecen los símbolos **ref** y .

**Observación**: si el período de referencia no ha sido definido, el instrumento emite una señal acústica y aparece el mensaje "Err Hz" o "Err V" en la pantalla. El símbolo parpadea y luego aparece el mensaje "rdy" en la pantalla. Repita el procedimiento a partir del punto 4.

#### Paso 2 : determinación de un período de "medida":

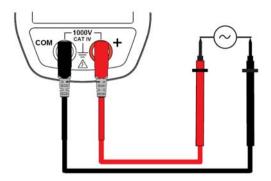
Aplique en los 10 segundos siguientes la punta de prueba en la fase L3 supuesta. La indicación "MEAS" parpadea entonces en la pantalla en cuanto se desconecta la fase L2, el instrumento está calculando.

**Observación**: si el período de medida no ha sido definido, el instrumento emite una señal acústica y aparece el mensaje "Err Hz" o "Err V" y luego "rdy". Repita el procedimiento a partir del punto 4.

**Resultado:** cuando el orden de las fases ha sido determinado, el instrumento emite una señal acústica y aparece el orden de las fases en la pantalla de la siguiente forma:

- 0.1.2.3 si el sentido de rotación es directo. El símbolo "0" parpadea y gira en el sentido de las agujas del reloj;
- 0.3.2.1 si el sentido de rotación está invertido. El símbolo "0" parpadea y gira en el sentido contrario a las agujas del reloj.

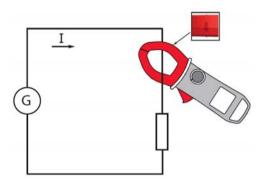
**Observación:** si el orden de las fases no ha sido definido, el instrumento emite una señal acústica y aparece el mensaje "Err". Repita el procedimiento a partir del punto 4.


# 3.13 MEDIDA DE FRECUENCIA (HZ)

La medida de frecuencia está disponible en V y A para las magnitudes AC y AC+DC. Es una medida basada en el principio de cómputo de paso de la señal por cero (frentes montantes).

#### 3.13.1 Medida de frecuencia en tensión

Para medir la frecuencia en tensión, proceda como se indica a continuación:


- Posicione el conmutador en y pulse la tecla Aparece el símbolo Hz;
- Seleccione AC o AC+DC pulsando la tecla amarilla hasta la elección deseada.
- 3. Conecte el cable negro al borne **COM** y el cable rojo al "+";
- Coloque las puntas de prueba o las pinzas cocodrilo en los bornes del circuito a medir.



El valor de la medida aparece en la pantalla.

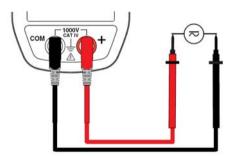
#### 3.13.2 Medida de frecuencia en intensidad

- Posicione el conmutador en y pulse la tecla Aparece el símbolo Hz;
- Seleccione AC o AC+DC pulsando la tecla amarilla hasta la elección deseada.
- 3. Abrace el único conductor implicado con la pinza.



El valor de la medida aparece en la pantalla.

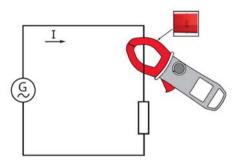
### 3.13.3 Medida de frecuencia en potencia


En posición Potencia (W) AC o AC+DC en red monofásica, se puede visualizar la frecuencia de la tensión de la señal presente en los bornes.

En posición Potencia (W) AC o AC+DC en red trifásica equilibrada, se puede visualizar la frecuencia de la tensión de línea de la señal presente en los bornes.

# 3.14 MEDIDA DE LA DISTORSIÓN ARMÓNICA TOTAL (THD) Y DE LA FRECUENCIA DE LA FUNDAMENTAL (RED)

# 3.14.1 Medida de la THD y de la frecuencia de la fundamental en tensión


- 1. Posicione el conmutador en 🔽 y mantenga pulsada (>2s) la tecla "\*2". Aparece el símbolo THDr. Para seleccionar el THDr, pulse de nuevo la tecla "\*2". Aparece el símbolo THDr. Para seleccionar la frecuencia de la fundamental, pulse de nuevo la tecla "\*2". Aparece el símbolo Hz
- 2. Conecte el cable negro al borne **COM** y el cable rojo al "+".
- Coloque las puntas de prueba o las pinzas cocodrilo en los bornes del circuito a medir.:



El valor de la medida aparece en la pantalla.

# 3.14.2 Medida de la THD y de la frecuencia de la fundamental en intensidad

- 1. Posicione el conmutador en y mantenga pulsada (>2s) la tecla Hz. Aparece el símbolo THD<sub>f</sub>. Para seleccionar la THD<sub>r</sub>, pulse de nuevo la tecla Hz. Se visualiza el símbolo THD<sub>r</sub>. Para seleccionar la frecuencia de la fundamental, pulse de nuevo la tecla Hz. Aparece el símbolo Hz.
- 2. Abrace el único conductor correspondiente con la pinza.



El valor de la medida aparece en la pantalla.

# 4 CARACTERÍSTICAS

### 4.1 CONDICIONES DE REFERENCIA

| Magnitudes de influencia                     | Condiciones de referencia |
|----------------------------------------------|---------------------------|
| Temperatura:                                 | 23 °C ± 2 °C              |
| Humedad relativa:                            | 45% a 75%                 |
| Tensión de alimentación:                     | 6,0 V ± 0,5 V             |
| Rango de frecuencia de la señal aplicada:    | 45 – 65 Hz                |
| Señal sinusoidal:                            | pura                      |
| Factor de pico de la señal alterna aplicada: | √2                        |

| Posición del conductor en la pinza: | centrada |
|-------------------------------------|----------|
| Conductores adyacentes:             | ninguna  |
| Campo magnético alterno:            | ninguna  |
| Campo eléctrico:                    | ninguna  |

## 4.2 CARACTERÍSTICAS EN LAS CONDICIONES DE REFERENCIA

Las incertidumbres están expresadas en ± (x% de la lectura (L) + y cuenta (ct)).

#### 4.2.1 Medida de tensión DC

| Rango de medida              | desde 0,00 V<br>hasta 99,99 V                                                                            | desde 100,0 V<br>hasta 999,9 V | 1000 V (1) |
|------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------|------------|
| Rango de medida especificado | de 0 a 100% del rango de medida                                                                          |                                |            |
| Incertidumbres               | desde 0,00 V<br>hasta 9,99 V<br>± (1% L + 10 ctas)<br>desde 10,00 V<br>hasta 99,99 V<br>± (1% L +3 ctas) | ± (1% L + 3 ctas)              |            |
| Resolución                   | 0,01 V                                                                                                   | 0,1 V                          | 1 V        |
| Impedancia de entrada        | 10 ΜΩ                                                                                                    |                                |            |

- <u>Nota (1)</u> Aparece la indicación "+OL" por encima de + 2000 V en modo REL y "-OL" por encima de 2000 V en modo REL.
  - Por encima de 1000 V, una señal acústica sucesiva indica que la tensión medida es superior a la tensión de seguridad para la cual el instrumento está garantizado. Aparece la indicación "OL".

| 422   | Medida de tensió    | n AC                               |
|-------|---------------------|------------------------------------|
| 4.2.2 | ivieulua de lelisio | $\mathbf{H} \mathbf{A} \mathbf{C}$ |

| Rango de medida                  | desde 0,15 V                    | desde 100,0 V     | 1000 V RMS             |  |
|----------------------------------|---------------------------------|-------------------|------------------------|--|
| - Trango de medida               | hasta 99,99 V                   | hasta 999,9 V     | 1400 V pico o peak (1) |  |
| Rango de medida especificado (2) | de 0 a 100% del rango de medida |                   |                        |  |
| Incertidumbres                   | desde 0,15 V                    |                   |                        |  |
|                                  | hasta 9,99 V                    |                   |                        |  |
|                                  | ± (1% L + 10 ctas)              | ± (1% L + 3 ctas) |                        |  |
|                                  | desde 10,00 V                   | ,                 |                        |  |
|                                  | hasta 99,99 V                   |                   |                        |  |
|                                  | ± (1% L +3 ctas)                |                   |                        |  |
| Resolución                       | 0,01 V                          | 0,1 V 1 V         |                        |  |
| Impedancia de entrada            | 10 ΜΩ                           |                   |                        |  |

- Nota (1) Aparece la indicación "OL" por encima de 1400 V (en modo PEAK)
  - Por encima de 1000 V RMS, una señal acústica sucesiva indica que la tensión medida es superior a la tensión de seguridad para la cual el instrumento está garantizado. Aparece la indicación "OL".
  - Banda concurrida en AC = 3 kHz

<u>Nota (2)</u> - Todo valor comprendido entre cero y el umbral mínimo del rango de medida (0,15 V) está forzado a "----" en pantalla.

### 4.2.3 Medida de tensión en AC+DC

| Rango de medida              | desde 0,15 V                                                                                             | desde 100,0 V   1000 V RMS MÁX. |             |
|------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------|-------------|
| (2)                          | hasta 99,99 V                                                                                            | hasta 999,9 V                   | 1400 V pico |
| Rango de medida especificado | 0 a 100% del rango de medida                                                                             |                                 |             |
| Incertidumbres               | desde 0,15 V<br>hasta 9,99 V<br>± (1% L + 10 ctas)<br>desde 10,00 V<br>hasta 99,99 V<br>± (1% L +3 ctas) | ± (1% L + 3 ctas)               |             |
| Resolución                   | 0,01 V                                                                                                   | 0,1 V                           | 1 V         |
| Impedancia de entrada        | 10 ΜΩ                                                                                                    |                                 |             |

- <u>Nota (1)</u> Aparece la indicación "OL" por encima de 1400 V (en modo PEAK)
  - Por encima de 1000 V (DC o RMS), una señal acústica sucesiva indica que la tensión medida es superior a la tensión de seguridad para la cual el instrumento está garantizado.
  - Banda concurrida en AC = 3 kHz

- <u>Nota (2):</u> Todo valor comprendido entre cero y el umbral mínimo del rango de medida (0,15 V) está forzado a "----" en pantalla.
- Características específicas en modo MAX/MIN en tensión (desde 10 Hz hasta 1 kHz, en AC o AC+DC, y desde 0,30 V):
  - Incertidumbres: añada 1% L a los valores de las tablas anteriores.
  - Tiempo de captura de los extremos: 100 ms aproximadamente.
- Características específicas en modo PEAK en tensión (desde 10 Hz hasta 1 kHz en AC o AC+DC):
  - Incertidumbres: añada 1.5 % L a los valores de las tablas anteriores.
  - Tiempo de captura del PEAK: 1 ms mín. a 1,5 ms máx.

### 4.2.4 Medida de intensidad DC

| Rango de medida                     | desde 0,00 A<br>hasta 99,99 A                           | desde 100,0 A<br>hasta 999,9 A | desde 1000A hasta<br>1500 A (1) |  |
|-------------------------------------|---------------------------------------------------------|--------------------------------|---------------------------------|--|
| Rango de<br>medida<br>especificado  | 0 a 100% del rango de medida                            |                                |                                 |  |
| Incertidumbres (2) (cero corregido) | ± (1% L + 10 ctas) ± (1% L + 3 ctas) ± (1,5% L + 3 ctas |                                |                                 |  |
| Resolución                          | 0,01 A                                                  | 0,1 A                          | 1 A                             |  |

Nota (1) - Aparece la indicación "+OL" por encima de 3000 A y "-OL" por encima de - 3000 A en modo REL. Los signos "-" y "+" se toman en cuenta (polaridad)

<u>Nota (2)</u> - La corriente residual al cero depende de la remanencia. Puede corregirse mediaante la función "DC cero" de la tecla HOLD.

#### 4.2.5 Medida de intensidad AC

| Rango de medida (2)          | desde 0,15 A<br>hasta 99,99 A   | desde 100,0 A<br>hasta 999,9 A | 1000 A (1)          |
|------------------------------|---------------------------------|--------------------------------|---------------------|
| Rango de medida especificado | de 0 a 100% del rango de medida |                                |                     |
| Incertidumbres               | ± (1% L + 10 ctas)              | ± (1% L + 3 ctas)              | ± (1,5% L + 3 ctas) |
| Resolución                   | 0,01 A                          | 0,1 A                          | 1 A                 |

<u>Note (1)</u> - Aparece la indicación "OL" por encima de 1500 A (en modo PEAK). Los signos "-" y "+" no se toman en cuenta.

- Banda concurrida en AC = 2 kHz

- <u>Note (2)</u> Todo valor comprendido entre cero y el umbral mínimo del rango de medida (0,15 A) está forzado a "----" en pantalla.
  - Corriente residual al cero < 150 mA.

#### 4.2.6 Medida de intensidad AC+DC

| Rango de<br>medida (2)                    | desde 0,15 A<br>hasta 99,99 A | desde 100,0 A<br>hasta 999,9 A | AC: 1000A<br>DC o PEAK: desde<br>1000A hasta 1500 A (1) |
|-------------------------------------------|-------------------------------|--------------------------------|---------------------------------------------------------|
| Rango de<br>medida<br>especificado        | 0 a 100% del rango de medida  |                                |                                                         |
| Incertidumbres<br>(2) (cero<br>corregido) | ± (1% L + 10 ctas)            | ± (1% L + 3 ctas)              | ± (1,5% L + 3 ctas)                                     |
| Resolución                                | 0,01 A                        | 0,1 A                          | 1 A                                                     |

- Note (1) En DC, aparece la indicación "+OL" por encima de + 3000 A y "-OL" por encima de 3000 A en modo REL. Los signos "-" y "+" se toman en cuenta (polaridad).
- En AC y AC+DC, aparece la indicación "OL" por encima de 1500 A (en modo PEAK). Los signos "-" y "+" no se toman en cuenta.
  - Banda concurrida en AC = 2 kHz
- <u>Note (2)</u> En AC, todo valor comprendido entre cero y el umbral mínimo del rango de medida (0,15 V) está forzado a "----" en pantalla.
  - Corriente residual al cero:
    - En DC: depende de la remanencia. Puede corregirse mediante la función "DC cero" de la tecla HOLD.
    - En AC: < 150 mA.</li>
- Características específicas en modo MAX/MIN en intensidad (desde 10 Hz hasta 1 kHz, en AC o AC+DC, y desde 0,30 A):
- Incertidumbres (cero corregido): añada 1% L a los valores de las tablas anteriores.
- Tiempo de captura de los extremos: 100 ms aproximadamente.
- Características específicas en modo PEAK en intensidad (desde 10 Hz hasta 1 kHz en AC o AC+DC):
- Incertidumbres: añada ± (1,5% L + 0,5 A) a los valores de las tablas anteriores.
- Tiempo de captura del PEAK: 1 ms mín. a 1,5 ms máx.

### 4.2.7 Medida de True-Inrush

| Rango de medida              | desde 10 A hasta<br>1000 A AC   | Desde 10 A hasta 1500<br>A DC |
|------------------------------|---------------------------------|-------------------------------|
| Rango de medida especificado | de 0 a 100% del rango de medida |                               |
| Incertidumbres               | ± (5% l                         | _ + 5 ctas)                   |
| Resolución                   |                                 | 1 A                           |

# Características específicas en modo PEAK en True-Inrush (desde 10 Hz hasta 1 kHz en AC):

- Incertidumbres: añada ± (1,5% L + 0,5 A) a los valores de la tabla de arriba.
- Tiempo de captura del PEAK: 1 ms mín. a 1,5 ms máx.

### 4.2.8 Medida de continuidad

| Rango de medida                | desde 0,0 hasta 999,9 Ω                         |  |  |
|--------------------------------|-------------------------------------------------|--|--|
| Tensión en circuito abierto    | ≤ 3.6 V                                         |  |  |
| Corriente de medida            | 550 μA                                          |  |  |
| Incertidumbres                 | ± (1% L + 3 ctas)                               |  |  |
| Umbral do dispara dal zumbadar | Programable desde 1 $\Omega$ hasta 999 $\Omega$ |  |  |
| Umbral de disparo del zumbador | (40 Ω por defecto)                              |  |  |

### 4.2.9 Medida de resistencia

| Rango de medida (1)          | $\begin{array}{c cccc} \text{desde } 0,0 \ \Omega & \text{desde } 1000 \ \Omega \\ \text{hasta } 999,9 \ \Omega & \text{hasta } 9999 \ \Omega \end{array}$ |                   | desde 10,00 kΩ<br>hasta 99,99 kΩ |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| Rango de medida especificado | de 1 a 100% del rango de medida de 0 a 100% del rango de medi                                                                                              |                   | rango de medida                  |
| Incertidumbres               |                                                                                                                                                            | ± (1% L + 3 ctas) |                                  |
| Resolución                   | 0,1 Ω 1 Ω 10 Ω                                                                                                                                             |                   |                                  |
| Tensión en circuito abierto  |                                                                                                                                                            | ≤ 3.6 V           |                                  |
| Corriente de medida          | 550 μA                                                                                                                                                     | 100 μΑ            | 10 μA                            |

<u>Note (1)</u> - Cuando se rebasa el valor máximo de visualización, aparece en pantalla la indicación "OL". Los signos "-" y "+" no se toman en cuenta.

# Características específicas en modo MAX-MIN:

- Incertidumbres: añada 1% L a los valores de la tabla de arriba.
- Tiempo de captura de los extremos: 100 ms aproximadamente.

### 4.2.10 Prueba de diodo

| Rango de medida                       | desde 0,000 V hasta 3,199 V DC                                          |
|---------------------------------------|-------------------------------------------------------------------------|
| Rango de medida especificado          | 1 a 100% del rango de medida                                            |
| Incertidumbres                        | ± (1% L + 3 ctas)                                                       |
| Resolución                            | 0,001 V                                                                 |
| Corriente de medida                   | 0.55 mA                                                                 |
| Indicación de unión inversa o cortada | Visualización de "OL" cuando el valor de la tensión medida es > 3,199 V |

Pota: El signo "-" está inhibido para la función prueba de diodo.

# 4.2.11 Medidas de potencia activa DC

| Rango de<br>medida (2)             | desde 0 W hasta<br>9999 W                                                                 | desde 10,00<br>kW hasta<br>99,99 kW                                                   | desde 100,0<br>kW hasta<br>999,9 kW | desde 1000<br>kW hasta<br>1500 kW (1) |
|------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|
| Rango de<br>medida<br>especificado | 1 a 100% del rango de<br>medida                                                           | 0 a 100% del rango de medida                                                          |                                     | medida                                |
| Incertidumbres (3)                 | hasta 1000 A<br>± (2% L +10 ctas)<br>desde 1000 A hasta<br>1500 A<br>± (2,5% L + 10 ctas) | hasta 1000 A<br>± (2% L + 3 ctas)<br>desde 1000 A hasta 1500 A<br>± (2,5% L + 3 ctas) |                                     | 500 A                                 |
| Resolución                         | 1 W                                                                                       | 10 W                                                                                  | 100 W                               | 1000 W                                |

- Nota (1) Visualización de O.L o ± O.L
  - Por encima de 1500 kW en monofásica (1000 V x 1500 A).
  - Por encima de ± 3000 kW. en modo REL.
- <u>Nota (2)</u> Toda tensión aplicada superior a 1000 V acarrea la emisión de una señal acústica intermitente de alarma de sobrecarga que conlleva un posible peligro.
- <u>Nota (3)</u> - El resultado de la medida puede ser inestable debido a la medida de la corriente (aproximadamente 0,1 A).

Por ejemplo: para una medida de potencia realizada a 10 A, la inestabilidad de la medida será de 0,1 A / 10 A es decir del 1%.

# 4.2.12 Medidas de potencia activa AC

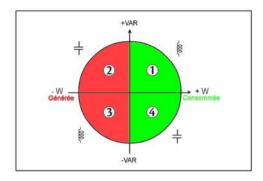
| Rango de<br>medida (2)             | desde 5 W hasta<br>9999 W       | desde<br>10,00 kW<br>hasta<br>99,99 kW | desde 100,0<br>kW hasta<br>999,9 kW | 1000 kW (1) |
|------------------------------------|---------------------------------|----------------------------------------|-------------------------------------|-------------|
| Rango de<br>medida<br>especificado | 1 a 100% del rango<br>de medida | 0 a 100% del rango de medida           |                                     |             |
| Incertidumbres                     | hasta 1000 A                    | hasta 1000 A                           |                                     |             |
| (3) (7)                            | ± (2% L +10 ctas)               | ± (2% L + 3 ctas)                      |                                     |             |
| Resolución                         | 1 W                             | 10 W 100 W 1000 W                      |                                     |             |

#### Nota (1) - Visualización de O.L.

- Por encima de 1000 kW en monofásica (1000 V x 1000 A).
- Banda concurrida en AC en tensione = 3 kHz, en intensidad = 2 kHz

## La nota (2) y la nota (3) del § anterior serán aplicables.

- <u>Nota (4)</u> Toda potencia medida inferior a 5 W se considera como nula y da lugar a la indicación "----".
  - Si la tensión es inferior a 0,15 V o si la corriente es inferior a 0,15 A, la potencia medida se considera como nula y da lugar a la indicación "----".
- <u>Nota 5</u> Las potencias activas son positivas para potencias consumidas y negativas para potencias generadas.
- <u>Nota 6</u> Los signos de las potencias activas y reactivas y del factor de potencia son definidos por la regla de los 4 cuadrantes a continuación:


El diagrama de abajo resume las nociones de signos sobre las potencias, en función del ángulo de desfase entre U e I:

Cuadrante 1 : Potencia activa P signo + (potencia consumida)

Cuadrante 2 : Potencia activa P signo - (potencia generada)

Cuadrante 3 : Potencia activa P signo - (potencia generada)

Cuadrante 4 : Potencia activa P signo + (potencia consumida)



<u>Nota (7)</u> - En trifásica equilibrada, en presencia de señales deformadas (THD y armónicos), las incertidumbres están garantizadas a partir de  $\Phi$  > 30°. Se añaden errores adicionales en función de la THD:

# 4.2.13 Medidas de potencia activa AC+DC

| Rango de<br>medida (2)             | desde 5 W hasta<br>9999 W                                                                 | desde<br>10,00 kW<br>hasta<br>99,99 kW                                                | desde 100,0<br>kW hasta<br>999,9 kW | desde 1000<br>kW hasta<br>1500 kW (1) |
|------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|
| Rango de<br>medida<br>especificado | 1 a 100% del rango de<br>medida                                                           | 0 a 100% del rango de medida                                                          |                                     | de medida                             |
| Incertidumbres (3) (7)             | hasta 1000 A<br>± (2% L +10 ctas)<br>desde 1000 A hasta<br>1500 A<br>± (2,5% L + 10 ctas) | hasta 1000 A<br>± (2% L + 3 ctas)<br>desde 1000 A hasta 1500 A<br>± (2,5% L + 3 ctas) |                                     | as)<br>a 1500 A                       |
| Resolución                         | 1 W                                                                                       | 10 W                                                                                  | 100 W                               | 1000 W                                |

Nota (1) - Visualización de O.L.

- Por encima de 1500 kW en monofásica (1000 V x 1500 A).
- Banda concurrida en AC en tensione = 3 kHz, en intensidad = 2 kHz

Las notas (2), (3), (4), 5, 6 y (7) del § anterior serán aplicables.

# 4.2.14 Medidas de potencia aparente AC

| Rango de<br>medida (2)             | desde 5 VA hasta<br>9999 VA     | desde 10,00<br>kVA hasta<br>99,99 kVA | desde 100,0<br>kVA hasta<br>999,9 kVA | 1000 kVA (1) |
|------------------------------------|---------------------------------|---------------------------------------|---------------------------------------|--------------|
| Rango de<br>medida<br>especificado | 1 a 100% del rango<br>de medida | 0 a 100% del rango de medida          |                                       | e medida     |
| Incertidumbres                     | hasta 1000 A                    | hasta 1000 A                          |                                       |              |
| (3)                                | ± (2% L +10 ctas)               | ± (2% L + 3 ctas)                     |                                       |              |
| Resolución                         | 1 VA                            | 10 VA                                 | 100 VA                                | 1000 VA      |

# Nota (1) - Visualización de O.L

- Por encima de 1000 kVA en monofásica (1000 V x 1000 A).
- Banda concurrida en AC en tensione = 3 kHz, en intensidad = 2 kHz

Las notas (2), (3) y (4) del § anterior serán aplicables.

## 4.2.15 Medidas de potencia aparente AC+DC

| Rango de<br>medida (2)             | Desde 5 VA hasta 9999<br>VA                                                               | Desde 10,00<br>kVA hasta<br>99,99kVA                                                  | desde<br>100,0kVA<br>hasta<br>999,9 kVA | desde<br>1000kVA<br>hasta<br>1500kVA (1) |
|------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|
| Rango de<br>medida<br>especificado | 1 a 100% del rango de<br>medida                                                           | 0 a 100% del rango de medida                                                          |                                         | medida                                   |
| Incertitumbres (3)                 | hasta 1000 A<br>± (2% L +10 ctas)<br>desde 1000 A hasta<br>1500 A<br>± (2,5% L + 10 ctas) | hasta 1000 A<br>± (2% L + 3 ctas)<br>desde 1000 A hasta 1500 A<br>± (2,5% L + 3 ctas) |                                         | 500 A                                    |
| Resolución                         | 1 VA                                                                                      | 10 VA                                                                                 | 100 VA                                  | 1000 VA                                  |

### Nota (1) - Visualización de O.L.

- Por encima de 1500 kVA en monofásica (1000 V x 1500 A).
- Banda concurrida en AC en tensione = 3 kHz, en intensidad = 2 kHz

Las notas (2), (3) y (4) del § anterior serán aplicables.

# 4.2.16 Medidas de potencia reactiva AC

| Rango de<br>medida (2)             | desde 5 var hasta<br>9 999 var    | desde 10,00<br>kvar hasta<br>99,99 kvar | desde<br>100,0kvar<br>hasta<br>999,9 kvar | 1000kvar (1) |
|------------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------------|--------------|
| Rango de<br>medida<br>especificado | 0 a 100% del rango<br>de medida   | 0 a 100% del rango de medida            |                                           | medida       |
| Incertitumbres (3) (8)             | hasta 1000 A<br>± (2% L +10 ctas) | hasta 1000 A<br>± (2% L + 3 ctas)       |                                           | )            |
| Resolución                         | 1 var                             | 10 var                                  | 100 var                                   | 1000 var     |

### Nota (1) - Visualización de O.L.

- Por encima de 1000 kvar en monofásica (1000 V x 1000 A).
- Banda concurrida en AC en tensione = 3 kHz, en intensidad = 2 kHz

Las notas (2), (3) y (4) de los § anteriores serán aplicables.

- Nota 5 En monofásica, el signo de la potencia reactiva está determinado por el avance o retardo de fase entre los signos U e I, mientras que en trifásica equilibrada está determinado por el cálculo a partir de las muestras.
- <u>Nota 6</u> Signos de las potencias reactivas según la regla de los 4 cuadrantes (§ 4.2.12):

Cuadrante 1 : Potencia reactiva Q signo + Cuadrante 2 : Potencia reactiva Q signo + Cuadrante 3 : Potencia reactiva Q signo -Cuadrante 4 : Potencia reactiva Q signo -

<u>Nota (8)</u> - En monofásica, en presencia de señales deformadas (THD y armónicos), las incertidumbres están garantizadas a partir de  $\Phi$  > 30°. Se añaden errores adicionales en función de la THD:

Añada +1% por 10% < THD < 20%

Añada +3% por 20% < THD < 30%

Añada +5% por 30% < THD < 40%

# 4.2.17 Medidas de potencia reactiva AC+DC

| Rango de<br>medida (2)             | desde 5 var hasta<br>9999 var                                                          | desde<br>10,00kvar<br>hasta<br>99,99 kvar                                               | desde<br>100,0kvar<br>hasta<br>999,9 kvar | desde<br>1000kvar<br>hasta<br>1500 kvar (1) |
|------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|
| Rango de<br>medida<br>especificado | 0 a 100% del rango de<br>medida                                                        | 0 a 100% del rango de medida                                                            |                                           | de medida                                   |
| Incertitumbres (3) (8)             | hasta 1000 A<br>± (2% L +10 ctas)<br>desde 1000 A hasta 1500 A<br>± (2,5% L + 10 ctas) | hasta 1000 A<br>± (2% L + 3 ctas)<br>A desde 1000 A hasta 1500 A<br>± (2,5% L + 3 ctas) |                                           | ctas)<br>ta 1500 A                          |
| Resolución                         | 1 var                                                                                  | 10 var                                                                                  | 100 var                                   | 1 000 var                                   |

## Nota (1) - Visualización de O.L o ± O.L

- Por encima de 1500 kvar en monofásica (1000 V x 1500 A).
- Banda concurrida en AC en tensione = 3 kHz, en intensidad = 2 kHz

Las notas (2), (3), (4), 5, 6 y (8) de los § anteriores serán aplicables.

- Características específicas en modo MAX/MIN en potencia (desde 10 Hz hasta 1 kHz):
  - Incertidumbres: añada 1 %L a los valores de las tablas anteriores.
  - Tiempo de captura: 100 ms aproximadamente.

# 4.2.18 Cálculo del factor de potencia

| Rango de medida (1) | desde -1,00 hasta +1,00 |                   |  |
|---------------------|-------------------------|-------------------|--|
| Rango de medida     | 0 a 50% del rango       | 50 a 100% del     |  |
| especificado        | de medida               | rango de medida   |  |
| Incertidumbres (7)  | ± (3% L + 3 ctas)       | ± (2% L + 3 ctas) |  |
| Resolución          | 0,0                     | )1                |  |

Nota (1) - Si uno de los resultados del cálculo del factor de potencia indica "OL", o forzado a cero, el factor de potencia que aparece es un valor indeterminado "----".

<u>La nota (7)</u> de los § anteriores será aplicable.

<u>Nota 9</u> - Signos del factor de potencia según la regla de los 4 cuadrantes (§ 4.2.12):

Cuadrante 1: Factor de potencia PF signo + (sistema inductivo)

 $Cos \Phi$  signo +

Cuadrante 2 : Factor de potencia PF signo - (sistema capacitivo)

 $Cos \Phi$  signo -

Cuadrante 3: Factor de potencia PF signo + (sistema inductivo)

 $Cos \Phi$  signo –

Cuadrante 3 : Factor de potencia PF signo + (sistema capacitivo)

 $Cos \Phi$  signo +

- Características específicas en modo MAX/MIN (desde 10 Hz hasta 1 kHz):
  - Incertidumbres: añada 1 %L a los valores de la tabla de arriba.
  - Tiempo de captura: 100 ms aproximadamente.

### 4.2.19 Medidas de frecuencia

#### 4.2.19.1 Características en tensión

| Rango de medida (1) | desde 5,0 Hz      | desde 1000 Hz                  | desde 10,00 kHz |
|---------------------|-------------------|--------------------------------|-----------------|
|                     | hasta 999,9 Hz    | hasta 9999 Hz                  | hasta 19,99 kHz |
| Rango de medida     | 1 a 100% del      | 0 a 100% del rango de medida   |                 |
| especificado        | rango de medida   | o a 100% del lango de inicalda |                 |
| Incertidumbres      | ± (0,4% L + 1 ct) |                                |                 |
| Resolución          | 0,1 Hz            | 1 Hz                           | 10 Hz           |

### 4.2.19.2 Características de intensidad

| Rango de medida (1)          | desde 5,0 Hz hasta 1999 Hz   |  |
|------------------------------|------------------------------|--|
| Rango de medida especificado | 1 a 100% del rango de medida |  |
| Incertidumbres               | ± (0,4% L + 1 ct)            |  |
| Resolución                   | 0,1 Hz                       |  |

Nota (1) en modo MAX/MIN, el rango de funcionamiento está limitado a 1 kHz;

si el nivel de la señal es insuficiente (<10% del rango, es decir U < 10 V o I < 10 A) o si la frecuencia es inferior a 5 Hz, el instrumento no puede determinar la frecuencia y aparecen guiones "----"-

Características específicas en modo MAX-MIN (desde 10 Hz hasta 1kHz):

- Incertidumbres: añada 1% L a los valores de la tabla de arriba.
- Tiempo de captura de los extremos: 100 ms aproximadamente.

### 4.2.20 Características en THDr

| Rango de medida              | 0,0 - 100%                                                 |
|------------------------------|------------------------------------------------------------|
| Rango de medida especificado | 0 a 100% del rango de medida                               |
| Incertidumbres               | ±(5% L + 2 cts) en tensión<br>±(5% L + 5 cts) en corriente |
| Resolución                   | 0,1%                                                       |

### 4.2.21 Características en THDf

| Rango de medida              | 0,0 – 100%                                                 |
|------------------------------|------------------------------------------------------------|
| Rango de medida especificado | 0 a 100% del rango de medida                               |
| Incertidumbres               | ±(5% L + 2 cts) en tensión<br>±(5% L + 5 cts) en corriente |
| Resolución                   | 0,1%                                                       |

**Mota**: Aparece "----" si la señal de entrada es demasiado débil (U < 8 V o I < 9 A) o si la frecuencia es inferior a 5 Hz.

- Características específicas en modo MAX-MIN en THD (desde 10 Hz hasta 1kHz):
  - Incertidumbres: añada 1% L a los valores de las tablas anteriores.
  - Tiempo de captura de los extremos: 100 ms aproximadamente.

# 4.2.22 Indicación del orden de las fases

| Rango de frecuencia                                                                | desde 47 Hz hasta 400 Hz                                                               |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Rango de tensión admisible                                                         | desde 50 V hasta 1.000 V                                                               |
| Tiempo de adquisición del periodo de referencia                                    | ≤ 500 ms                                                                               |
| Período de validez de la información sobre el período de referencia                | desde 10 s hasta 50 Hz<br>aproximadamente<br>desde 2 s hasta 400 Hz<br>aproximadamente |
| Tiempo de adquisición del periodo de medida + visualización del orden de las fases | ≤ 500 ms                                                                               |
| Índice de desequilibrio admisible en fase                                          | ± 10 °                                                                                 |
| Índice de desequilibrio admisible en amplitud                                      | 20 %                                                                                   |
| Distorsión armónica total admisible en tensión                                     | 10 %                                                                                   |

# 4.3 CONDICIONES DE ENTORNO

| Condiciones de entorno | en uso                      | almacenado                  |
|------------------------|-----------------------------|-----------------------------|
| Temperatura            | desde - 20 °C hasta + 55 °C | desde - 40 °C hasta + 70 °C |
| Humedad relativa (HR): | ≤ 90% a 55 °C               | ≤ 90% hasta 70 °C           |

# 4.4 CARACTERÍSTICAS CONSTRUCTIVAS

| Carcasa:     | Estructura rígida en policarbonato sobremoldeado en elastómero |  |  |  |
|--------------|----------------------------------------------------------------|--|--|--|
| Mordazas:    | En policarbonato                                               |  |  |  |
|              | Abertura: 48 mm                                                |  |  |  |
|              | Diámetro de la capacidad para abrazar: 48 mm                   |  |  |  |
| Pantalla:    | Pantalla LCD<br>Retroiluminación azul                          |  |  |  |
|              |                                                                |  |  |  |
|              | Dimensiones: 41 x 48 mm                                        |  |  |  |
| Dimensiones: | AI 272 x An 92 x P 41 mm                                       |  |  |  |
| Peso:        | 600 g (con pilas)                                              |  |  |  |

# 4.5 SUMINISTRO ELÉCTRICO

| Pilas:                                             | 4 x 1,5 V LR6                                                       |
|----------------------------------------------------|---------------------------------------------------------------------|
| Autonomía media:                                   | > 350 horas (sin retroiluminación)                                  |
| Duración de funcionamiento antes del auto apagado: | Después de 10 minutos sin girar el conmutador y/o pulsar las teclas |

# 4.6 CONFORMIDAD CON LAS NORMAS INTERNACIONALES

| Seguridad eléctrica                   | Cumple con las normas CEI 61010-1, CEI 61010-2-30 y CEI 61010-2-32:<br>1000 V CAT IV. |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Compatibilidad electromagnética:      | Cumple con la norma EN 61326-1<br>Clasificación entorno residencial                   |  |  |
| Resistencia mecánica:                 | Caída libre: 2 m (según la norma IEC 68-2-32)                                         |  |  |
| Grado de protección de la envolvente: | Carcasa: IP54 (según la norma IEC 60529)<br>Mordazas: IP40                            |  |  |

# 4.7 VARIACIONES EN EL RANGO DE UTILIZACIÓN

| Magnitud de                                                                 | Rango de                                                                     | Magnitud                                    | Influencia                                            |                                                                                                                   |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| influencia                                                                  | influencia                                                                   | influenciada                                | Típica                                                | MÁX                                                                                                               |
| Temperatura                                                                 | -20+55°C                                                                     | V AC<br>V DC<br>A*<br>Ω → H<br>W AC<br>W DC | -<br>0,1%L/10°C<br>1%L/10°C*<br>-<br>-<br>0,15%L/10°C | 0,1%L/10°C<br>0,5%L/10°C + 2ct<br>1,5%L/10°C +2ct*<br>0,1%L/10°C + 2 ct<br>0,2%L/10°C + 2 ct<br>0,3%L/10°C + 2 ct |
| Humedad                                                                     | 10%90%HR                                                                     | V<br>A<br>Ω→H-<br>W                         | ≤ 1 pt<br>-<br>0,2%L<br>0,25%L                        | 0,1%L + 1 cta<br>0,1%L + 2 ct<br>0,3%L + 2 ct<br>0,5%L + 2 ct                                                     |
| Frecuencia                                                                  | 10 Hz1 kHz<br>1 kHz3 kHz<br>10 Hz400 Hz<br>400 Hz2 kHz                       | V<br>A                                      | 1%L<br>8%L<br>1%L<br>4%L                              | 1%L + 1 cta<br>9%L + 1 cta<br>1%L + 1 cta<br>5%L + 1 cta                                                          |
| Posición del<br>conductor dentro<br>de las mordazas<br>(f≤400 Hz)           | Posición<br>cualquiera dentro<br>del perímetro<br>interno de las<br>mordazas | А                                           | 2%L                                                   | 4%L + 1 cta                                                                                                       |
| Conductor<br>adyacente<br>atravesado por<br>una corriente 150<br>A DC o RMS | Conductor en<br>contacto con el<br>perímetro externo<br>de las mordazas      | А                                           | 40 dB                                                 | 45 dB                                                                                                             |
| Conductor<br>abrazado por la<br>pinza                                       | 0-500 A RMS                                                                  | V                                           | < 1 ct                                                | 1 ct                                                                                                              |
| Aplicación de una tensión a la pinza                                        | 0-1.000 V DC o<br>RMS                                                        | А                                           | < 1 ct                                                | 3% L + 1 ct                                                                                                       |
| Factor de pico                                                              | 1,4 a 3,5 limitado<br>a 1500 A pico<br>1400 V pico                           | A (AC)<br>V (AC)                            | 1%L<br>1%L                                            | 3% L + 1 ct                                                                                                       |

Nota\* en Temperatura : Influencia especificada hasta 1000 A DC

# **5 MANTENIMIENTO**

El instrumento no contiene ninguna pieza que pueda ser sustituida por un personal no formado y no autorizado. Cualquier intervención no autorizada o cualquier pieza sustituida por piezas similares pueden poner en peligro seriamente la seguridad.

#### 5.1 LIMPIEZA

- Desconecte cualquier cable del instrumento y posicione el conmutador en OFF.
- Utilice un paño suave ligeramente empapado con agua y jabón. Aclare con un paño húmedo y seque rápidamente con un paño seco o aire inyectado.
- Séguelo con esmero antes de volver a utilizarlo.

### 5.2 CAMBIO DE LAS PILAS

El símbolo indica que las pilas están gastadas. Cuando aparezca este símbolo en la pantalla, se tienen que cambiar las pilas. Las medidas y especificaciones ya no están garantizadas.

Para cambiar las pilas, proceda como se indica a continuación:

- 1. Desconecte los cables de medida de los bornes de entrada:
- 2. Posicione el conmutador en OFF;
- 3. Con un destornillador, desatornille el tornillo de la tapa de acceso a las pilas situada en la parte posterior de la carcasa y abra la tapa (véase § 3.1);
- 4. Sustituya todas las pilas (véase § 3.1);
- 5. Vuelva a colocar la tapa y atorníllela a la carcasa.

# 5.3 COMPROBACIÓN METROLÓGICA

Al igual que todos los instrumentos de medida o de prueba, es necesario realizar una verificación periódica.

Le aconsejamos una verificación anual de este instrumento. Para las verificaciones y calibraciones, contacte con nuestros laboratorios de metrología acreditados (solicítenos información y datos), con la filial Chauvin Arnoux o con el agente de su país.

# 5.4 REPARACIÓN

Para las reparaciones ya sean en garantía y fuera de garantía, devuelva el instrumento a su distribuidor.

# 6 GARANTÍA

Nuestra garantía tiene validez, salvo estipulación expresa, durante tres años a partir de la fecha de entrega del material. Extracto de nuestras Condiciones Generales de Venta, comunicadas a quien las solicite.

La garantía no se aplicará en los siguientes casos:

- utilización inapropiada del instrumento o su utilización con un material incompatible;
- Modificaciones realizadas en el instrumento sin la expresa autorización del servicio técnico del fabricante;
- Una persona no autorizada por el fabricante ha realizado operaciones sobre el instrumento:
- Adaptación a una aplicación particular, no prevista en la definición del equipo y no indicada en el manual de instrucciones;
- daños debidos a golpes, caídas o inundaciones.

# 7 ESTADO DE ENTREGA

La pinza multimétrica **F405** se suministra en su caja de embalaje con:

- 2 cables banana-banana rojo y negro
- 2 puntas de prueba roja y negra
- 1 pinza cocodrilo negra
- 4 pilas 1,5 V
- 1 bolsa de transporte
- el manual de instrucciones en varios idiomas en mini-CD
- la guía de inicio rápido en varios idiomas



06 - 2012

Code: 692887A05 - Ed. 2

#### DEUTSCHLAND - Chauvin Arnoux GmbH

Straßburger Str. 34 - 77694 Kehl / Rhein Tel: (07851) 99 26-0 - Fax: (07851) 99 26-60

#### ESPAÑA - Chauvin Arnoux Ibérica SA

C/ Roger de Flor N° 293, Planta 1- 08025 Barcelona Tel: 902 20 22 26 - Fax: 934 59 14 43

#### ITALIA - Amra SpA

Via Sant'Ambrogio, 23/25 - 20050 Bareggia di Macherio (MI) Tel: 039 245 75 45 - Fax: 039 481 561

#### ÖSTERREICH - Chauvin Arnoux Ges.m.b.H

Slamastrasse 29/2/4 - 1230 Wien Tel: 01 61 61 961-0 - Fax: 01 61 61 961-61

#### SCANDINAVIA - CA Mätsystem AB

Box 4501 - SE 18304 TÄBÝ Tel: +46 8 50 52 68 00 - Fax: +46 8 50 52 68 10

#### SCHWEIZ - Chauvin Arnoux AG

Moosacherstrasse 15 - 8804 AU / ZH Tel: +41 44 727 75 55 - Fax: +41 44 727 75 56

#### **UNITED KINGDOM - Chauvin Arnoux Ltd**

Unit 1 Nelson Court – Flagship Square-Shaw Cross Business Park DEWSBURY – West Yorkshire – WF12 7TH Tel: 019244 460 494 – Fax: 01924 455 328

#### MIDDLE EAST - Chauvin Arnoux Middle East

P.O. BOX 60-154 - 1241 2020 JAL EL DIB (Beirut) – LEBANON Tel: (01) 89 04 25 - Fax: (01) 89 04 24

# CHINA - Shanghai Pu-Jiang - Enerdis Instruments Co. Ltd

3 F, 3 rd Building - N° 381 Xiang De Road - 200081 SHANGHAI Tel: +86 21 65 21 51 96 - Fax: +86 21 65 21 61 07

# USA - Chauvin Arnoux Inc - d.b.a AEMC Instruments

200 Foxborough Blvd. - Foxborough - MA 02035 Tel: (508) 698-2115 - Fax: (508) 698-2118

#### http://www.chauvin-arnoux.com

190, rue Championnet - 75876 PARIS Cedex 18 - FRANCE

Tél.: +33 1 44 85 44 85 - Fax: +33 1 46 27 73 89 - info@chauvin-arnoux.fr

Export: Tél.: +33 1 44 85 44 86 - Fax: +33 1 46 27 95 59 - export@chauvin-arnoux.fr